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Abstract—Accurate navigation and memory formation in dy-
namic environments require a continuous real-time update of
spatial representations. This adaptive process, known as remap-
ping, plays a crucial role in achieving precision in navigation
tasks within continuously changing environments. In this article,
we use a model that employs a path integration (PI) mechanism
derived from neural head direction (HD) cells modulated by
the linear speed of the animal. We introduce a mechanism for
recalibrating PI through visual place cells (VPC) generated from
visual information surrounding the animal. Our objective is to
present and analyze the capabilities and limitations of our PI
recalibration mechanism and investigate through an experiment
how PCs, generated by the model, respond to environmental
changes.

Keywords—Navigation, Place Cells, Path Integration, Remap-
ping

I. INTRODUCTION

The discovery of PCs and their role in spatial navigation
has been a breakthrough in the field of neuroscience [1]. Place
cells are neurons that exhibit selective firing patterns when an
animal occupies a particular location in its environment. The
firing pattern of these cells forms a place code of the navigated
environment allowing the animal to orient itself and remember
spatial information.

Several studies have shown that the brain can integrate
multiple sources of information to update its internal repre-
sentation of space [2]: PCs are especially influenced by both
external visual cues, such as landmarks [3], [4], and internal
cues, such as self-motion [5], [6].

Numerous studies have examined the impact of visual and
idiothetic cues on the activity of PCs as well as the hierarchy
between them [7]. The findings have been inconsistent. Some
studies suggest that visual cues are more influential than
idiothetic cues [8], while others suggest the opposite [9].
Other studies show mixed results, depending on the specific
conditions of the experiment [10]. For instance, under partic-
ular experimental circumstances, rodents predominantly rely
on the PI mechanism for navigation, a concept introduced in
[11]. Only after repeated attempts do rodents begin to use the
present landmarks to direct their navigation [12].

Another important aspect of PCs is their ability to show a
remapping. Remapping in the context of navigation refers to
the phenomenon in which the firing patterns of PCs change in

response to changes in the environment [1]. This means that
the same location in different environments can be represented
by different groups of place cells. Remapping is thought
to be important for allowing animals to distinguish between
different environments and prevent confusion between similar
environments [13].

Remapping has been observed in a variety of contexts,
including changes in visual landmarks, alterations in the shape
or size of the environment, and changes in the lighting or odor
of the environment [13], [14]. Interestingly, remapping is not
limited to the hippocampus, as other brain regions, such as
the entorhinal cortex (EC), have also been shown to exhibit
remapping [15]. This suggests that remapping is a general
feature of neural circuits involved in spatial navigation.

Previous studies employing PCs generated solely from self-
motion have demonstrated that animals utilize path integration
PI to differentiate visually identical compartments based on
changes in their spatial representations. For example, partial
remapping was observed in [16], while [17] noted nearly
complete remapping. These findings highlight the significance
of PI in the process of updating spatial representations of
space. In support of this, our model incorporates PI to generate
PC-like activity. Additionally, a mechanism for recalibrating
PI through vision is introduced to ensure the stability of these
PCs over time.

In this article, we will present the architecture of our model,
encompassing the encoding of visual information, the mech-
anism for generating PC-like activity from an approximation
of the PI, and the design of our PI recalibration mechanism.
We will provide an analysis of its capabilities, including
adaptability to changes in the environment, as well as discuss
its limitations and potential avenues for improvement.

II. MODEL

Our computational model comprises three populations of
neurons, as illustrated in Fig. 2. The first population consists
of VPCs associated with visual information, created using the
PerAc architecture [18]. They learn the place code of the navi-
gated environment from a constellation of different landmarks.
The second population is a group of neurons encoding PI.
This population is formed through an approximation of the PI
mechanism, by integrating a neural field of HD modulated by



Fig. 1. Schematic representation of our model. The figure shows three
populations of interconnected neurons: VPC, built from visual landmarks and
azimuth, and PI neurons, built from HD and speed of the agent. VPC is used
to calibrate PI and generate a robust PC population.

speed. The last population is a group of cells with a PC-like
activity that we will call PCs, created through a straightforward
model introduced in [19], resulting from a PI corrected by
vision.

The recursive nature of PI leads to error accumulation
after navigating for a long time in the environment without
returning to the starting point, this limitation is discussed in
[20]. Without a corrective mechanism, a breakdown in the
calculation of location can occur [21].

Taking into account the behavioral evidence of PI being
corrected using visual information [22]–[24], we implemented
a PI recalibration mechanism relying on vision.

A. Visual Place Cells Model

Fig. 2. The figure shows the architecture of the model used to create
VPCs through the Pr-Ph for the ”what” (Landmarks) and ”where” (Azimuth)
information, followed by a WTA to select only one neuron, called state, to
code a single place

The VPC model (Fig. 2) is a neural network that processes
a local view of a 2D environment containing landmarks to
extract and recognize constellations of these landmarks as
well as their identity. By merging ”What” (landmark) and

”Where” (azimuth) information in the perirhinal and post-
rhinal cortices, as claimed in [25], corresponding to the Pr-
Ph structure in our model, the model can activate a neuron
in the Pr-Ph structure only when a local view is recognized
under a specific azimuth. This mechanism enables a VPC to
construct a global code for the current location with a dynamic
short-term memory to create a sufficiently wide place field, to
avoid confusion between places that can occur when dealing
with a discrete environment, and to ensure continuity of
place encoding in the environment. Additionally, a competitive
mechanism is used to select the winning neuron that best
recognizes the current place. A detailed explanation of the
model as well as the equations behind the model are given in
[26], [27].

The activity of VPCs corresponds to the level of recognition
of landmarks under a given azimuth. To ensure the firing
of one neuron for each recognized place, a Winner-Takes-
All (WTA) mechanism [28] establishes competition between
VPCs. The one with the highest activation level ends by
encoding the current place.

This model has demonstrated robustness in generating a
spatial map of the environment from visual input. Different
robotics experiments using the VPC model validate its robust
performance [27], [29], [30].

B. Path Integration Model

Fig. 3. The figure illustrates the model employed for learning PI. This is
achieved through LMS1 learning from HD modulated by the linear speed of
the animal with a learning rate of 0.001. A vision-based recalibration is shown
through a loop, which is effective only when a state center is active. In this
loop, LMS2 learns the association between well-known visual places and the
one time step delayed PI with a learning rate of 1. Subsequently, the learned
signal is added to LMS1’s previous output signal. To prevent saturation, the
output is divided by two and then directly used to be learned by LMS1 with
a recalibration learning rate of 0.1. The loop concludes only when the state
center is no longer active.

The base model used here aims to generate neurons with a
PC-like activity from a field of PI neurons constructed from
HD information modulated by the speed of the animal [32].



The model is based on the work presented in [33] and is further
studied in different experimental setups in [19], [30].

The architecture of the model is simplified by creating a
so-called ”speed field” that incorporates only discretized HD
with an activity corresponding to the speed of the animal,
and where each neuron of the field corresponds to a discrete
heading direction in the environment. We suppose that the
head direction of the animal is the same as the direction of
movement of the animal. We use a positive cosine bump, as
presented in Eq. 1 and as shown in Fig. 4, exhibiting activation
values between 0 and 1 and reaching its maximum at the
current heading direction θi. A Gaussian bump with a carefully
chosen standard deviation can be used to approximate the
cosine, for biological plausibility, as shown in [34]. We chose
a positive cosine function which is more suitable for a stable
PI [20].

Ui(Φ(t)) = (1 + cos(Φ(t)− θi))/2 (1)

Fig. 4. The figure shows the shape of the speed field at time t, encoded on a
360 HD neuron modulated by the speed of the animal. The heading direction
is θ(t)

In our simulations, we use N neurons to encode the speed
field. We chose N = 360 to encode HD information, resulting
in θi = −2π i

360 HD possible angles, where i ∈ {0, . . . , 359}.
A large discretization step of the HD field can lead to a lack of
precision for PI encoded also on the same number of neurons
N , which leads to angular error propagation by missing the
precise value of some angles [20]. The higher is N , the better
the precision; for our model, we consider setting N = 360
sufficiently appropriate to avoid error accumulation [20].

The speed field is then learned through classical condition-
ing relying on the Least Mean Squares (LMS) learning rule
[31] and performing the same task as a short-term memory
(STM). The mathematical proof of the LMS approximating
the mechanism of PI and the equivalence between LMS and
STM is highlighted in equation (5) in the appendix.

To construct a spatial code for the navigated environment
based on PI, we follow the procedure outlined in [19]. We
derive PC-like activity through the discretization of neuron
activity within the PI field. This involves subtracting the
average activity value of all neurons in the PI field, resulting in
a field of PI comprising both positive and negative ”activities”
referred to as the vector integration field (VIF). Simulta-
neously, the positive and negative activities are projected
into a Kohonen self-organizing map [36], producing neurons
exhibiting PC-like activity. Each neuron is then selected and
attributed to one specific location through a winner-takes-
all (WTA) process. We will call these cells ”place cells”
(PCs), and they represent a spatial code of the environment.
These neurons are the focal point for our investigation of the
phenomenon of remapping.

C. Recalibration mechanism

Since PI tends to accumulate errors during animal travels
without returning to the starting point within a reasonable
time or during high-angular-speed turns, various methods are
used to correct it. Some involve simply resetting PI to zero
after error accumulation, achieved by visually detecting the
starting point through the first active VPC, often facilitated by
periodic homing. When the first learned VPC with a place field
corresponding to the starting point is recognized, an inhibition
process resets the PI neurons [30]. Another solution involves
using a binary signal; when a VPC exhibits very high activity,
the binary signal is triggered [20] to set the PI field activity to
zero in one shot. These methods prevent error accumulation
and were tested in different robotics experiments, such as in
[30].

Another method consists of achieving a reset of PI by
identifying novelty, as discussed in previous studies [?], [?].
Specifically, the PI reset is triggered when the novelty gradient
becomes null.

A more plausible alternative consists of recalibrating PI
without resetting it to zero. This method is very similar to
our recalibration mechanism that will be presented next. As
used in [30] and in a slightly different way in [37], this
approach involves learning to associate the PI field with the
winning VPC each time through an LMS algorithm. This
allows the system to recalibrate PI when places are well
visually recognized: specifically, when the activity of the most
active VPC exceeds a static threshold, along with a significant
difference in activity between the two most consecutively
active VPCs.

Our recalibration mechanism, shown in the model architec-
ture in Fig. 3, comprises two consecutive LMS algorithms.
The first, LMS1, directly performs PI from the speed field
by learning the association between a context with constant
activity set to 1 and the speed field. Meanwhile, LMS2
performs one-shot learning, associating PI with the center
of each state. When the agent is in a state center, LMS2
rapidly adapts its weights to approximate the PI arriving with
a very small delay. The learned PI and the current PI are



then merged, to be learned again by LMS1 more rapidly than
usual. This process is a replacement for the previous PI with
the new one that takes into account visual information, and
this process continues until the animal exits the center of the
state, indicating insufficient place recognition. The theoretical
details of the recalibration loop functioning can be found in
the appendix.

The state center is derived from VPCs, selecting only those
with activity above a threshold of 0.98 to ensure recalibration
in particular areas. This approach ensures that the association
is learned only when a state-center neuron is active, at the
center of each place field. This strategy prevents recalibrating
PI in confusing locations, as explained in [30].

III. SIMULATIONS

Fig. 5. The figure shows room A, room B, and room AB the merging of
room A and B. Each symbol ”+” represents a landmark with a unique identity

The animal is simulated according to its (x, y) coordinates,
taking a constant speed and a randomly chosen head direction
(HD) at each time step without significant changes. This
approach aims to prevent the agent from drifting and to
generate a plausible movement pattern.

Our experiment is similar to the one in [38], [39]. It involves
exploring a first square room, A, with various landmarks,
followed by a second square room, B, which also contains the
same number of landmarks. These landmarks are positioned
near the boundaries of the rooms, as shown in Fig. 5. After
constructing separate spatial codes for each room, the bound-
ary separating the two rooms is removed to enable the agent
to explore the new room AB, resulting from the merging of
room A and room B. In this combined room, only 12 out of
the initially set 16 landmarks for rooms A and B are retained.
This adjustment is made to ensure that some previously active

VPCs in both rooms also remain active in the new, merged
room. The environment parameters for each room are in Table.
I. We expand the recalibration area for each place field since
the activity of the VPCs depends on the recognition level of
landmarks, which varies between rooms A, B, and the new
one AB.

Our goal is to have the agent learn a stable place code
through the PCs recruited in rooms A and B. When switching
to room AB, we cease the recruitment of new VPCs and
observe the dynamics of the PCs over time, monitoring how
the change of their firing patterns in the new environment.

We set the learning rate of the LMS1 outside recalibration
zones to be 0.001, which correctly approximates the process
of PI in an environment of size 2m × 2m, as shown in [19].

In our model, we attempted to determine the recalibration
parameters that contribute to achieving the optimal stability of
the place cells (PCs), which is still a hard task, due to the high
sensitivity of our model to these parameters. Consequently, we
established the recalibration learning rate of LMS1 as 0.1. The
learning rate of LMS2 remains constant and is set to 1. Within
a recalibration zone, the merging of LMS1 and LMS2 outputs
occurs, and the result is divided by two to maintain the same
scale as the previous PI homing vector, knowing that LMS2
approximates LMS1 output in one-shot learning.

We ran the simulation, initially starting in room A at the ori-
gin (10, 10) for a duration of 80000 time-steps. Subsequently,
we moved the animal to point (40, 90) for another duration of
80000 time-steps. Following this, the separating wall between
room A and room B was removed to allow the animal to
navigate the new environment AB. In this combined space,
there is no learning of new place VPCs or PCs. We rely solely
on what has been learned in the two rooms separately, and the
navigation lasts for 180000 time-steps. The parameters used
for the simulation in rooms A and B, and then in room AB,
are detailed in Appendix II and III respectively.

TABLE I
ENVIRONMENT PARAMETERS

Parameters Room A Room B Room AB
Environment size 2 m × 2m 2 m × 2m 2 m × 4m

Number of landmarks 8 landmarks 8 landmarks 12 landmarks

IV. RESULTS

We recorded the activity of PCs as the agent navigated each
room. From this recording, we examined the place fields of
the PCs during the last 20000 time-steps for rooms A and
B, during which the place field of each cell was sufficiently
stable. For room AB, we monitored the place fields of the same
cells, observing their evolution and activity during each 40000
time-step segment throughout the entire 180000 time-steps.

We observe that the place field centers, representing the
maximum activity, have shifted slightly in the new room
AB compared to their positions in room B, for PC 51 and
PC 43, as shown in Figures 6 and 7. This indicates that



the PCs are attempting to adapt to the new environment.
However, since the experiment was conducted in room AB for
only a duration of 180000 time-steps, we cannot conclusively
determine whether a complete remapping has occurred. The
duration may be insufficient for establishing a very stable place
code, and this is due to the limitations of our recalibration
mechanism, as it will be discussed in detail in the next section.

Note that, the density of the place field in recorded cells
is influenced not only by the vigilance used for the Kohonen
map but also by the size of the state centers. In scenarios
where a recalibration area is notably large, the recalibration
loop ensures the sustained activity of the PI field over this
area, contributing to the creation of a large place field for the
recruited cell.

Fig. 6. The figure illustrates the place fields of PC 51 in room A (Figure
A), room B (Figure B), and Room AB (Figures AB.1, AB.2, AB.3, and
AB.4), where each figure corresponding to room AB represents, respectively,
a non-overlapping 40000 time-step segment within the total 180000 time-step
recording. The trajectory of the agent is given in gray.

Fig. 7. The figure illustrates the place fields of PC 43 in room A (Figure
A), room B (Figure B), and Room AB (Figures AB.1, AB.2, AB.3, and
AB.4), where each figure corresponding to room AB represents, respectively,
a non-overlapping 40000 time-step segment within the total 180000 time-step
recording. The trajectory of the agent is given in gray.

V. LIMITATIONS

The limitation of our recalibration mechanism lies in the
dynamic aspect resulting from different recalibration places.
For instance, if the animal arrives in the center of a state with a

PI containing accumulated errors, this can lead to memorizing
incorrect recalibration directions from the PI, easily affecting
the other recalibration directions imposed by the remaining
state centers. Additionally, our recalibration mechanism is
highly sensitive to the learning rate used for LMS1 during
recalibration; with a high recalibration learning rate, if the
recalibration direction learned previously for the state center
is not precise enough, LMS1 quickly learns a biased PI,
leading to a lack of stability. Conversely, with a small learning
rate, recalibration could take a very long time to exhibit the
averaging behavior of the predicted homing vectors.

Another inconvenience is that the animal can approach a
state center without triggering recalibration for a sufficient
time leading to an incomplete correction.

Our recalibration mechanism ensures stability within a very
long time, but its effectiveness relies on the number of suc-
cessful recalibrations. If a significant number of recalibration
zones incorrectly adjust PI, it may cause other zones to shift
their estimation of the ”correct” PI to a point different from
the origin.

VI. DISCUSSION AND PERSPECTIVES

Through the experiment, we observe that the model can
generate activity similar to PCs. It is capable of maintaining a
correct place code for subsequent iterations following updates
to the environment. This observation indicates that the model
tends to adapt to environmental changes.

As demonstrated in the theoretical explanation provided in
the appendix, our model architecture aligns with the intended
task. However, it exhibits certain limitations, primarily as-
sociated with the convergence time and the dynamic nature
of recalibration directions between the recalibration zones.
If not carefully controlled, these limitations may potentially
propagate errors to PI.

An improvement can be achieved by controlling the impact
of recalibration for each visually well-recognized area based
on the frequency of the animal’s visits. The more frequently an
area is visited, the more significant the impact of the previously
learned recalibration vector. This can be implemented by
decreasing the learning rate of LMS2 each time the area is
visited. Consequently, we gradually impose the old weights
until reaching a low learning rate where stability is guaranteed.
This approach can accelerate convergence and enhance the
accuracy of our PI estimation. To enable this recalibration
method to support environmental changes, it is essential not to
entirely impose the learned recalibration. This ensures that PI
has sufficient freedom to contribute and adapt gradually to the
changes in the environment, until reaching a new place code
configuration of the environment.

A robust recalibration mechanism, ensuring stability, can
have a significant application in solving navigation problems in
robotics, particularly in addressing the loop-closure detection
challenge within SLAM algorithms. It is accurate in precisely
locating the starting point without relying on vision every time.
Besides, through the analysis of PC activity linked to specific



locations, the model effectively identifies when the robot
returns to a past location, despite the changes occurring in the
environment. This recognition becomes vital after extended
exploration in unknown areas.

APPENDIX A
THEORETICAL EXPLANATION OF THE RECALIBRATION

MECHANISM

The following learning rule is used to modify weights Wij

for the LMS algorithms in our model, such that Oi(t) = Wij ·
Cj , where λ corresponds to the learning rate and ∆t is the
time-step of a small movement of the animal:

∆Wij = λ · (Ui(t)−Oi(t)) ·Cj = Wij(t+∆t)−Wij(t) (2)

After multiplying Eq. (2) by Cj :

λ · (Ui(t)−Oi(t)) · C2
j = Oi(t+∆t)−Oi(t) (3)

Hence:

Oi(t+∆t) = (1− λ · C2
j ) ·Oi(t) + λ · C2

j · Ui(t) (4)

For LMS1, Eq. (4) becomes Eq. (5), as we use a single
constant context C0 = 1. Outside a recalibration zone,
λLMS1 = 0.001; thus Eq. (4), after replacing the values,
becomes Eq. (5).

OLMS1
i (t+∆t) = 0.999 ·OLMS1

i (t) + 0.001 · Ui(t) (5)

Inside a recalibration zone LMS1 learns Ui(t) =
(OLMS2

i (t) +OLMS1
i (t))/2, with a learning rate λLMS1

= 0.1;
hence, Eq. (4) becomes Eq. (6).

OLMS1
i (t+∆t) = 0.9 ·OLMS1

i (t) + 0.1 · Ui(t) (6)

For LMS2, we use a learning rate λLMS2
= 1, correspond-

ing to one-shot learning of LMS1. Learning takes place when
the binary context is active; the context depends on whether the
animal is inside a recalibration zone or not; Cj = 1state center.

So when the agent is outside a recalibration zone, the
weights are unchanged, and the output of LMS2 is null since
the context is null.

OLMS2
i (t+∆t) = 0 (7)

Inside a recalibration area, the learning of LMS1’s output
by LMS2 occurs with one time-step decay:

OLMS2
i (t+∆t) = OLMS1

i (t) (8)

The recalibration equation of PI takes place for m consec-
utive iterations, is expressed as follows:

OLMS1
i (t+m ·∆t) = 0.9m ·OLMS1

i (t)+

0.1 ·
m−1∑
n=0

(0.9m−1−n · Ui(t+ n ·∆t))

(9)

Below is the analysis of the two terms of this equation:
Term 1: 0.9m ·OLMS1

i (t)

This term represents an exponential decay factor that re-
duces the influence of the initial PI estimation OLMS1

i (t) over
time. As m increases, 0.9m gets smaller, leading to a slow
reduction in the impact of the initial position. This term
provides memory in the recalibration process and allows the
system to correct its estimation gradually.

Term 2: 0.1 ·
∑m−1

n=0 (0.9
m−1−n · Ui(t+ n ·∆t))

This term accumulates contributions from Ui over m it-
erations. Each term in the sum, 0.9m−1−n, decreases with
time, giving less importance to older terms. This term aims to
balance current information from Ui(t) with historical infor-
mation from previous iterations, which allows the recalibration
process to consider both recent and previous adjustments
achieved over the m iterations.

The recalibration equation combines an exponential decay
factor 0.9m for gradual adaptation to the new estimated PI, and
a cumulative summation

∑m−1
n=0 (0.9

m−1−n ·Ui(t+n ·∆t)) as
a balancing factor between currently learned homing vectors
and the previously learned ones.

APPENDIX B
MODEL PARAMETERS

TABLE II
MODEL PARAMETERS IN ROOMS A AND B

Parameters Outside recalibration Inside recalibration
Learning rate (LMS1) 0.001 0.1
Learning rate (LMS2) 1

Vigilance VPCs 0.86
Vigilance PCs 0.996

State center threshold 0.98
Number of neurons in VPC field 600
Number of neurons in PC field 100

TABLE III
MODEL PARAMETERS IN ROOM AB

Parameters Outside recalibration Inside recalibration
Learning rate (LMS1) 0.001 0.1
Learning rate (LMS2) 1

Vigilance VPCs 0
Vigilance PCs 0

State center threshold 0.91
Number of neurons in VPC field 600
Number of neurons in PC field 100

The vigilance, ranging from 0 to 1, is used to regulate
the number of learned cells. A higher vigilance leads to the
recruitment of a larger number of cells, each with a narrow
place field covering the environment. Conversely, a lower
vigilance encodes a smaller number of PCs with wider place
fields.
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