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Abstract

In the context of pathology screening through medical imaging, the integration of automated

tools to expedite medical image analysis has become indispensable. Median Technologies is

actively leveraging AI for medical imaging, with a specific focus on cancer screening. One of

its standout offerings is the Lung Cancer Screening product, designed to facilitate the early

identification of potential lung cancer cases through CT scans. This product aims to aid in the

early identification of potential lung cancer cases through CT scans, with precise lung structure

segmentation being key to its effectiveness.

Despite the seemingly straightforward nature of lung segmentation due to their distinctive

appearance in CT scans, different confounding factors, such as gastric bubbles near the lungs

and other anomalies, often lead to suboptimal segmentation outcomes.

This internship is dedicated exclusively to improving lung segmentation, considered as the

foundational step in the cancer screening workflow. The primary objective is to achieve more

accurate lung masks, particularly within challenging scenarios. To accomplish this, we have

developed an architecture inspired by concepts of Wasserstein Generative Adversarial Networks

(WGANs), a robust variant of GANs. By precisely customizing the losses, tuning segmentation

process parameters, and incorporating prior knowledge into the segmentation model, we aim

to enhance its accuracy.

The significance of this research subject lies in its potential to enhance the precision of lung

cancer screening. A robust lung segmentation serves as the first step for subsequent analyses,

enabling automated systems to effectively pinpoint potential cancerous lesions. Thus, this

research establishes a strong foundation for improved cancer screening through medical imaging.
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Chapter 1

Introduction

In today’s healthcare landscape, medical imaging plays a pivotal role, assisting doctors in diag-

nosis and aiding researchers in studying diseases. With the emergence of Artificial Intelligence

(AI) and data abundance, numerous companies and research centers have turned their focus to-

ward developing cutting-edge techniques for medical imaging to support radiologists. However,

this quest for precision has brought about its own challenges.

1.1 Medical Imaging Overview

Cancer screening, fundamentally, focuses on early detection for more effective treatment. Mag-

netic Resonance Imaging (MRI) technology, for instance, has undergone significant enhance-

ments and is now capable of delivering highly detailed images used to identify small tumors or

growths often invisible through conventional X-rays. Notably, MRI procedures are non-invasive

and excel at capturing clear images of soft tissues, including detailed tumor tissues.

In the context of advancing the precise analysis of tumors and determination of their stage,

Computerized Tomography (CT) scans have emerged as indispensable tools. By providing

doctors with a high-resolution three-dimensional view of the body regions, CT scans facilitate

the measurement of tumor size, location, and extent of spread. Such information is critical

in tailoring the most appropriate treatment strategy, whether it entails surgery, radiation, or

chemotherapy.

Medical imaging is considered a strong tool besides biomarker analysis in the field of cancer

research. MRI and CT scans permit researchers to dive into the genetic and molecular alter-

ations occurring within tumors. By integrating the information garnered from both medical

imaging and biomarker analysis, we can gain a comprehensive macro and micro view of cancer.

Thus contributing to a deeper understanding of cancer and the development of more precisely

tailored treatments for individual patients.

More recently, the integration of AI into the field has triggered a revolution in medical imaging.

Deep learning and machine learning algorithms have been meticulously crafted to swiftly and

accurately analyze medical images. This technological innovation serves as a valuable aid to

radiologists in terms of identifying anomalies or potential tumors within medical images and

then expediting the diagnostic process.
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1.2 Company Background

Median Technologies is a global company specializing in medical imaging and data science.

They offer the iBiopsy platform, an AI-powered imaging solution for early cancer diagnosis

and continuous patient monitoring. Additionally, Median provides iCRO solutions, harnessing

proprietary AI and image analysis technologies for oncology clinical studies.

The company’s headquarters is located in Sophia-Antipolis, Provence-Alpes-Côte d’Azur. With

over 300 professionals, the company’s primary focus is on Research and Development in the field

of medical imaging for cancer screening. Median Technologies actively engages in various global

cancer research activities, including publishing research articles in journals and conferences, as

well as hosting seminars. Operating in both the American and Chinese markets, they are

present in Boston, MA, and Shanghai, China.

There are two main activities, each assigned to a specific team, and the teams work on their

respective activities, as detailed below:

The iBiopsy (Precision Diagnostic) team is working on developing a portfolio of innovative

end-to-end AI and ML tech-based Software as Medical Devices (SaMDs) in indications where

early diagnosis is needed. Their main goal is to enhance the quality of medical diagnostics

through AI in Lung Cancer, Liver Cancer, and Liver Fibrosis Disease.

The first step of the process involves obtaining a CT scan of the patient. The CT scan is then

converted into DICOM format and stored in the PACS which stands for Picture Archiving and

Communication System, which is a medical imaging technology used primarily in healthcare

organizations to securely store and transmit electronic images and clinical reports. The images

within the PACS database undergo specific preprocessing to prepare them for use as input in

the AI processing pipeline, whether it’s for training or inference. A comprehensive DICOM

report is generated and sent back to the PACS database, which can be accessed by radiologists

to assist in their diagnosis (Figure 1.1).

Figure 1.1: iBiopsy Workflow

The iCRO (Clinical Trials) team works on providing leading oncology clinical trial imaging
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services, collaborating directly with different life sciences partners to accelerate the develop-

ment, assessment, and delivery of cancer treatments.

Median iCRO assists clients throughout the clinical development process, beginning with

protocol design and imaging criteria selection. They work to refine clinical strategies to

improve product accuracy, cost efficiency, and asset value maximization. Their expertise

in early-stage clinical studies includes providing access to advanced criteria and innovative

imaging biomarkers for enhanced data. For Phase II-III trials, they offer efficient global clinical

trial imaging solutions and handle regulatory submissions, along with supporting inspections

by regulatory agencies.

Figure 1.2: iCRO Workflow

3



Chapter 2

Image Segmentation

Medical imaging is essential in healthcare as it produces detailed visualizations of internal

body structures through X-rays, MRI, and CT scans. Segmentation performance is evaluated

using various metrics such as sensitivity, specificity, the Dice coefficient, Intersection over Union

(IoU), and Hausdorff distance. The choice of the metric depends on the level of granularity and

details needed to be captured in a given segmentation task, which is particularly important in

the medical field.

2.1 Medical Image Segmentation

Image segmentation is a fundamental process in computer vision that involves classifying pixels

(2D) or voxels (3D) with the goal of partitioning an image into distinct, meaningful regions.

At its core, image segmentation consists of identifying and delineating objects or structures of

interest within an image. In the field of computer vision, segmentation plays a vital role in

tasks like object recognition, scene understanding, and image analysis.

In the context of medical image segmentation, highly capturing-details segmentation is very

important, given that precise detection and localization of anatomical structures or pathological

regions are essential for diagnosis. In 2D medical image segmentation, for example in MRI or

CT scans, the objective is to identify and segment organs, tumors, or abnormalities within

individual 2D slices extracted from the 3D scan.

When it comes to three-dimensional images, segmentation considers the volumetric nature of

medical scans, such as 3D CT or MRI images. This continuity provides a more comprehen-

sive understanding of the segmented object, and its surrounding regions, and serves as the

foundation for more in-depth analysis.

Consider, for instance, the 3D MRI analysis of brain tumors. Accurate segmentation of tumor

boundaries is essential. It allows radiologists to quantitatively assess tumor size, shape, and

internal heterogeneity.

2.2 Scope and Objectives

In the same context, the internship I undertook within the R&D team at Median Technologies,

located at their headquarters in Sophia-Antipolis. Dr. Danny Francis supervised this internship,

with the main focus on 3D Lung Segmentation from CT Scans. This task serves as the initial
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step in the cancer diagnosis pipeline, which is the AI Processing part in Figure 1.1, developed

by the iBiopsy team.

The main challenge of the internship was linked to segmentation performance on certain pa-

tient data. To be specific, in some cases, patients had the gastric bubble positioned very close

to the lung, causing the models to incorrectly label gastric bubble voxels as part of the lung.

Consequently, this led to the presence of false positive voxels, potentially introducing complica-

tions in nodule detection and localization during the subsequent stages of the screening process.

The final goal was to attain accurate segmentation, thus laying a robust first step for further

analysis.

To address this issue, we explored various methods aimed at reducing the occurrence of false

positives in our segmentation process. These methods consisted of getting benefits from shape

priors through a feedback loop in adversarial training, the implementation of customized loss

functions, and the use of an ensemble method.

Figure 2.1: Example of a CT slice from a patient with the gastric bubble positioned very close
to the left lung

2.3 Evaluation of Segmentation Quality

Segmentation tasks involve the process of isolating single or multiple objects within an image.

This is achieved by creating an appropriate segmentation mask, which is a 2D or 3D array

matching the size and dimensions of the image containing the target object. To isolate the

object of interest, we compute the dot-wise product between the mask and the original image.

In the case of multiple objects, each individual object within the image containing multiple

objects has its own mask, and the final result is obtained by combining these dot-wise products,

effectively summing the contributions of each object’s mask to the image.

5



Figure 2.2: A liver segmentation task, including a 2D slice from a 3D CT scan on the left, a
binary liver segmentation mask in the middle, and the isolated liver resulting from the mask
applied to the CT image on the right.

Assessing segmentation quality qualitatively by radiologists alone is insufficient, as it may over-

look very small details, especially in 3D masks, potentially leading to precision issues. In such

cases, various quantitative metrics are employed to ensure the accuracy of the final segmen-

tation mask. This facilitates a more accurate comparison between the segmentation outcome

mask and the ground truth mask.

Various metrics have been developed to evaluate segmentation by comparing the ground truth

mask and the segmentation mask. Below, we present some of these metrics, with a particular

focus on those used for our segmentation task.

2.3.1 DSC and IoU

The Dice Similarity Coefficient (DSC), also known as Sørensen-Dice [5], [29], is a widely used

metric in image segmentation. It quantifies the overlap between two binary masks, typically

the ground truth mask and the segmentation mask. The Dice score ranges from 0 to 1, with

higher values indicating a greater degree of similarity between the two masks. It is calculated

as follows:

DSC(A,B) =
2|A ∩B|
|A|+ |B|

(2.1)

Intersection over Union (IoU), called also Jaccard coefficient [24], is another widely used metric

in image segmentation, similar to the Dice score. It quantifies the overlap between two binary

masks, the ground truth mask, and the segmentation mask. The IoU score measures the ratio

of the intersection of the two masks to their union, providing a value between 0 and 1, with

higher values indicating greater similarity. IoU is calculated as follows:

IoU(A,B) =
|A ∩B|

|A|+ |B| − |A ∩B|
=
|A ∩B|
|A ∪B|

(2.2)
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Where:

|A ∩B| - Cardinality of intersection of mask A and B

|A ∪B| - Cardinality of union of mask A and B

|A| - Cardinality of mask A

|B| - Cardinality in mask B

2.3.2 Hausdorff Distance (HD)

The Hausdorff distance [2] is a metric used in image analysis and computer vision to measure

the dissimilarity or similarity between two sets of points or objects within an image.

It calculates the maximum distance from a point in one set to the nearest point in the other

set and vice versa. In other words, it quantifies the maximum separation or closeness between

two sets of points. More formally, for two sets A and B in a metric space:

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
(2.3)

Where:

d(a, b) - Distance between point a in set A and point b in set B

max(d(a,B)) - Maximum distance from a point in set A to the nearest point in set B

max(d(b, A)) - Maximum distance from a point in set B to the nearest point in set A

Figure 2.3: A visual description of Hausdorff distance between two masks A and B

This metric limitation is being less robust in handling errors caused by false positives and

false negatives, unlike IoU and DSC. By prioritizing distance over region overlap, the Hausdorff

distance takes into account more contour information, but can be more affected by misclassified

pixels or regions.
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Chapter 3

Data

Computed Tomography (CT) data provides the most detailed view of the internal structures

of the human body among all medical imaging data to date. It uses X-rays to create cross-

sectional images, commonly referred to as slices, of the body. These images are represented

in a numerical format called Hounsfield Units (HU). HU values are used to attribute value

to a voxel in standard 3D imaging, are a quantitative measure of tissue density and can help

distinguish between different types of tissues. It ranges from -1000 HU for air, through 0 HU for

water, to higher positive values for denser materials like bones, with a maximum of around 3000

HU. These values allow healthcare professionals to differentiate and analyze various anatomical

structures, aiding in the diagnosis and treatment of a wide range of medical conditions.

Moreover, CT data is inherently three-dimensional in nature. Unlike traditional X-rays that

provide 2D images, CT scanners capture a series of thin cross-sectional slices through the

body, and these slices can be reconstructed into a 3D volume. This 3D aspect of CT data is

very beneficial for visualizing a wide range of anatomical structures and helps precisely target

areas of interest. Through CT scans, medical practitioners are provided with a comprehen-

sive view of the patient’s internal anatomy, which is essential for accurate and precise diagnosis.

3.1 Description

In the pursuit of precision, the imaging data used comprises CT scans, which are available within

Median Technologies’ Database for both training and testing. These images are available in

Tissue HU

Bone +1000
Liver 40 to 60
White matter 20 to 30
Grey matter 37 to 45
Blood 40
Muscle 10 to 40
Kidney 30
CSF 15
Water 0
Fat -50 to -100
Air -1000

Table 3.1: Body tissues and their corresponding HU values
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Elements Classes

Left lung 3
Right lung 4
Trachea 5
Background 0

Table 3.2: Segmentation mask components and their corresponding class for each voxel

various formats, including DICOM, npy, and zraw with mhd headers. The latter format is the

one used for the experimental part of the internship.

We use datasets derived from subsets 0 and 1 of the LUNA16 database, which is openly available

and was originally introduced in the article [27]. These datasets can be downloaded from the

following link: https://luna16.grand-challenge.org/.

Our dataset contains CT scans from a total of 163 patients. For each CT scan in the dataset, a

corresponding lung segmentation mask was created through an initial automatic segmentation

process performed by our team. These masks underwent an in-house correction for a refined

version.

The final version of our dataset is structured as pairs, each consisting of a CT image and

its corresponding lung segmentation mask. 83 pairs are dedicated for training and validation

purposes, while the remaining 80 pairs were used for testing and evaluation.

The CT images within our dataset shows variation along three axes, specifically identified as

X, Y, and Z. Each dimension corresponds to a distinct view, as illustrated in Figure 3.1. These

images have HU values for each voxel, as mentioned in the previous paragraph. These HU

values span a range from -1,000 to 3,000 HU.

The segmentation masks within our dataset share a similar dimensionality, but they differ in

terms of voxel label values. These label values are explained in Table 3.2.

Figure 3.1: CT image views along the three axes (X, Y, and Z) from left to right

On the other side, there is the corresponding lung segmentation mask (see Figure 3.2), which

matches the dimensions and size of the CT image. These masks have been annotated by

radiologists and are divided into four classes, as described in Table 3.2.

9



Figure 3.2: Lung segmentation mask views along the three axes (X, Y, and Z) from left to right

3.2 Preprocessing

Preprocessing is necessary to standardize the data and extract the required information

from the raw data presented above. The preprocessing steps are designed as a cascade

of transformations to prepare the data for training, validation, and testing, which will be

described in the following sections. The preprocessing pipeline is presented in Figure 3.3.

Figure 3.3: Preprocessing pipeline for the CT images and their corresponding masks

Trilinear Interpolation is the first step, where the ground truth masks and CT images are

resized from their initial size to 128×128×128 using trilinear interpolation following the 3 axes

X, Y and Z.

Relabeling involves assigning new labels to the initial labels presented in Table 3.2. The

output is a mask where background voxels retain label 0, left lung voxels are assigned to the

new class 2, right lung voxels to the new class 3.

Windowing involves sliding a window over the CT image to restrict all HU values to fall

within a specified range, which is the window width. In this case, the range is set to [-1024,

+150] HU. This process effectively narrows down the range of information that is retained.

One-hot Encoding is a transformation that increases the segmentation mask dimensionality

to three masks, each with a size of 128×128×128, matching the initial size. These three masks

represent the left lung, right lung, and background, where voxels belonging to the respective

structures are denoted as 1, and 0 otherwise. This transformation applies only to segmentation

masks, CT images are kept unchanged.

Adding Batch represents the final transformation in the process. It applies to both the masks

and the CT images, introducing a new dimension corresponding to the batch size. The specific

batch size is used later in the experimental phase.
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Chapter 4

Segmentation Methods

Classical image segmentation methods have played a significant role in computer vision for

decades. They consist of using a wide range of techniques that aim to partition an image into

meaningful regions or objects. However, these methods, while effective in many scenarios, are

not without their limitations. These shortcomings have spurred the adoption of deep learning

techniques, which have revolutionized the field of image segmentation and led to better precision

and adaptation.

In this section, we will highlight the classical image segmentation methods, highlighting their

drawbacks, and explore how these challenges have driven the shift towards leveraging deep

learning for more robust and accurate segmentation tasks.

4.1 Classical Methods

Threshold methods are among the basic image segmentation techniques. They operate by

defining a threshold value and then categorizing each pixel in an image as either foreground or

background based on their intensity values compared to a threshold. The first threshold [17],

These static methods often struggle with noisy images, as they may produce incorrect results

due to fluctuations in pixel values. Additionally, selecting an appropriate threshold value can

be challenging, as it frequently depends on the specific characteristics of the image, such as

lighting conditions and object properties.

Region-based segmentation methods focus on grouping pixels that share similar attributes,

such as color, texture, or intensity, into distinct regions or segments. This approach aims to

identify coherent regions within an image. However, region-based methods are sensitive to the

initial selection of seed points, which can significantly impact the segmentation quality. Over-

segmentation, where an image is divided into too many small regions, and under-segmentation,

where regions are overly large, are common issues. Fine-tuning parameters is often necessary

to achieve nearly optimal results. In [20], the authors give an overview of different region-based

segmentation methods and provide a comparison between them.

Edge-based segmentation techniques concentrate on identifying edges or boundaries in an

image. They rely on edge detection algorithms [35] to locate fast changes in pixel intensity,

which often correspond to object boundaries. While these methods are effective at detecting

edges, they may produce false edges in noisy images and can suffer from incomplete or discon-

nected contours. Moreover, the edges detected may not necessarily correspond to meaningful

object boundaries, making them less suitable for tasks requiring precise object segmentation.
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Watershed-based segmentation [4] deals with the image as a topographic landscape and

simulates the process of flooding to delineate object boundaries. Although it can be effective

for some tasks, watershed segmentation often faces challenges such as over-segmentation, espe-

cially in textured regions, where fine details can lead to numerous small segments. A precise

preprocessing is typically required to avoid excessive segmentation, and the method can be

sensitive to noise in the image.

Clustering methods group pixels into clusters based on feature similarity such as color,

texture, or intensity. While they provide the possibility of defining the number of clusters,

selecting an appropriate number of clusters can be a complex task. Moreover, the accuracy

of clustering methods is tied to the choice of similarity metrics, which can influence their

performance.

These methods can provide reasonably good segmentation masks, but they exhibit different

weaknesses in terms of precision, which is a requirement in medical image segmentation, as

explained in a previous section.

4.2 Deep Learning Methods

4.2.1 Standard Convolutional Neural Networks

The emergence of deep learning, particularly Convolutional Neural Networks (CNNs) and the

backpropagation algorithm [21] have revolutionized image segmentation, offering superior re-

sults compared to traditional methods. CNNs excel at capturing complex image patterns and

object boundaries by automatically learning hierarchical features from data [19] through a

sequence of convolutions and pooling (see Figure 4.1)

Figure 4.1: Layers comprising a Convolutional Neural Network

These advancements have proven especially valuable in precision-demanding applications like

medical imaging. In tasks such as tumor detection in MRI scans [11] or organ segmentation in

CT images [26], deep learning consistently outperformed traditional methods.

4.2.2 Convolutional Autoencoders

Different models were adapted from general segmentation tasks to be used for medical image

segmentation. They are primarily based on Convolutional Autoencoders, which are essentially

standard CNNs with an autoencoder architecture [18]. This architecture leverages the encoding

of learned features into a latent space, which can later be decoded. This approach benefits from

inferring a standard primary shape between the data within the same distribution.
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Models like U-Net [26], U-Net++ [34], V-Net [23], and SegResNet [25] originally emerged for

2D medical image segmentation tasks and sometimes for 3D images. However, they also served

as inspiration for the development of new models only for 3D medical image segmentation, such

as 3D U-Net [3], among others. The architectural process remains the same, with the only

difference being that 2D convolution blocks were changed to 3D convolution blocks to handle

volumetric data.

What these models have in common is the use of skip connections in their architecture. These

skip connections are designed to prevent information loss in the encoder section, facilitating

the creation of tailored segmentation masks for each CT image. As the network processes the

data, high-level information is incrementally captured in the initial layers and subsequently

combined with their symmetrical layers in the decoder (see Figure 4.2). This technique effec-

tively prevents information degradation during the compression into latent space. Thanks to

these skip connections, these models achieve exceptionally precise segmentation by generating

highly accurate segmentation masks, compared to other models.

Figure 4.2: SegResNet [25] architecture used in a task of brain segmentation from 3D CT images

SegResNet was initially used for a 3D MRI brain tumor segmentation task [25], and it demon-

strated competitive performance in various challenges when compared to 3D U-Net and other

segmentation models. During this internship, we utilized SegResNet as the foundational model

for the task of lung segmentation from 3D CT images. We applied different loss functions to

train and evaluate the model using data from 163 patients.
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Chapter 5

Implementations and

Experiments

In this section, we will explore various implementations initially employed for the segmentation

task. Initially, a foundational model was used to accomplish our segmentation task. Subse-

quently, in pursuit of enhancing segmentation accuracy, we integrated this model into different

adversarial training setups, employing it as a generator in conjunction with five distinct discrim-

inator architectures. To refine the segmentation masks and provide more intricate details, an

optimization of the latent space was implemented. Finally, an ensemble method was employed

to produce a final version of the segmentation mask from different predictions.

5.1 Our Base Segmentation Model

We utilized SegResNet, the architecture of which is presented in Figure 4.2. The model under-

went training using the preprocessed dataset detailed in Chapter 3. The underlying principle

of this model revolves around encoding information within a latent space through the encoder

component and subsequently retrieving this information from the latent space via the decoder

component. This information is decoded and post-processed to have a binary mask.

Architecture

The encoder architecture is made from a series of individual blocks, called ResNet blocks [12],

that helps in avoiding gradient vanishing issues through the residual skip connections, each

composed of three sequential operations: Group Normalization [33] followed by ReLU activation

[8], and a 3×3×3 kernel convolution applied to the input with a stride of 2. This structure

ensures a systematic processing of the input data. The organization of these blocks follows a

hierarchical pattern.

Initially, the input image, with dimensions of 128×128×128, is processed by the first layer,

which contains just one block. Subsequently, the output from the first layer is fed into the

second layer, which is made of two of these blocks. Following this, the output continues into

the third layer, which also includes two blocks. Finally, the output is directed to the fourth

and final layer, where four blocks are used. This encoding process produces a set of feature

maps with dimensions identical to those of the original CT image, but with a reduced size of

16×16×16, and corresponds to our latent space.

The decoder, in turn, consists of the same blocks. However, instead of a 3×3×3 convolution,
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we use a 1×1×1 convolution followed by 3D bilinear upsizing to increase the size of the feature

maps retrieved from the latent space. The decoder’s architecture is made of three layers with

one block each: the first layer takes input from the latent space, and its output is then passed

to the second block, which in turn feeds the third block. The sizes increase symmetrically in

the other direction compared to the first three blocks in the encoder.

The specificity of this U-Net-like architecture is its use of skip connections, used to prevent the

loss of high-level features collected from the first three layers of the decoder. These features

are progressively concatenated with the feature maps from the latent space at the final layer of

the encoder, as well as inputs to the three layers of the decoder, as highlighted in Figure 4.2.

As a result, the decoder generates a segmentation mask with the same dimensions as the CT

image (128×128×128). This output contains three channels, same as the dimensionality of

approximated ground truth mask for the left lung, right lung, and background. Each value

assigned to a voxel within a channel represents the probability of that voxel belonging to the

corresponding segmented element.

In this context, the vector associated to each output voxel serve as a probability vector, with

each channel approximating the ground truth values of 0 for background, 1 for the left lung,

and 2 for the right lung.

Loss Function

The optimized loss function used for this model in a normal training setup is Cross-Entropy

(CE), which can be calculated as:

CE(A,B) = − 1

N

N∑
i=1

C∑
j=1

(Bij log(Aij) + (1−Bij) log(1−Aij)) (5.1)

Where:

CE(A,B) - Cross-entropy between generated mask A and ground-truth mask B

N - Number of voxels in the masks A and B

C - Number of classes or channels in the masks A and B (C is set to 3 in our case)

Aij - Voxel value in the generated mask A for voxel i and channel j

Bij - Voxel value in the ground-truth mask B for voxel i and channel j

CE loss, introduced by Shannon in the context of telecommunication [28], aims to quantify the

disparities in information content between the real and predicted values. It is widely employed

in classification tasks, including segmentation, as a loss function to minimize. It is differentiable,

measures dissimilarity among classes, and can easily handle multi-class problems.

5.2 Our Base Model in Adversarial Training Setup

With the goal of improving segmentation, we worked on using the model (SegResNet) as a

generator in a generative adversarial neural network (GANs) [10] setup to benefit from the

feedback offered by the discriminator through adversarial training.

GANs consist of putting two neural networks in competition (a zero-sum game) [10], where
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the advancement of one network comes at the expense of the other. Through training on a

dataset, this approach acquires the capability to produce new data with the same statistical

characteristics as the original training data.

The two networks are called generator, and discriminator, where the generator works to improve

its ability to produce realistic data to fool the discriminator, while the discriminator continually

refines its ability to differentiate real from fake data. This adversarial process drives both

networks to improve their performance, often resulting in the generation of high-quality data

samples that are increasingly difficult to distinguish from real ones.

GANs may suffer from mode collapse, where the generator fails to produce diverse outputs,

instead generating a limited set of similar samples. This issue can hamper the ability of GANs

to capture the full complexity of the data distribution.

In our task, we employ a GAN in a distinct context, separate from data reconstruction or

augmentation. Instead, we utilize it to generate segmentation masks using the SegResNet

generator, as elaborated in Section 5.1, for all the experiments outlined in this report. These

generated masks undergo evaluation by a discriminator to measure their proximity to the desired

outcome. The discriminator’s loss function provides feedback to the generator, establishing a

competitive dynamic between both networks.

We use a loss function inspired by the Wasserstein distance, as introduced here [32] and

also used as a solution to mode collapse in Wasserstein GAN (WGAN) [1]. The Wasserstein

distance formula is given in (5.2).

W (µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γd(x, y)

)
(5.2)

Where:

µ, ν - Two distributions

Γ(µ, ν) - Set of all couplings of distribution µ and ν

γ - A coupling distribution in Γ(µ, ν)

d(x, y) - Distance between x and y

Our objective is to train the generator to achieve a high level of accuracy by using discriminator

feedback. The discriminator’s role is to assign high scores to a distribution of inputs involv-

ing ground truth masks and low scores to generated masks, justifying the use of Wasserstein

distance-inspired loss function. This process makes the discriminator stronger and enables the

generator to produce refined segmentation masks.

These experiments were inspired by the work presented in [31], where the architectures were

originally applied to 2D lung segmentation from CT scans. In our work, we adapted these

architectures by using 3D convolutions to perform direct 3D lung segmentation on 3D CT

images.

Our generator remains the same throughout all experiments, while we explore five different

discriminator architectures in our quest to enhance accuracy and reduce the gastric bubble in

the segmentation mask.
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In all discriminator architectures, we employ LeakyReLU activation [22], as defined in (5.3),

with a slope parameter of α = 0.1.

f(x) =

x if x > 0,

αx otherwise
(5.3)

We also use batch normalization, as introduced in [14], to accelerate and stabilize the training

process.

The mean of a batch B with a size of m is computed according to the formula (5.4), while the

variance is calculated as shown in formula (5.5). Batch normalization is then applied to the

elements xi within a batch B using the formula (5.6).

Additionally, we include the parameter ϵ in the denominator for numerical stability, which is

useful if σ
(k)
B becomes very small.

µB =
1

m

m∑
i=1

xi (5.4)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (5.5)

x̂
(k)
i =

x
(k)
i − µ

(k)
B√(

σ
(k)
B

)2

+ ϵ

(5.6)

Dropout [30], is a regularization technique that enforces sparse activation for the concerned

layer. This encourages the network to acquire a sparse representation of the learned features,

then preventing overfitting. In all our experiments, we apply dropout with a dropout rate of

Pdropout = 0.25. This means that 25% of the neurones activity of the model are set to zero, as

described in (5.7).

âij =

0 with probability Pdropout

aij with probability 1− Pdropout

(5.7)

All of our models are trained from scratch, whether the generator is used alone in the model or

as part of a GAN setup. We do not use any pre-trained weights in our training process.

Our weights are initialized following Xavier initialization [9] which consists of initializing the

weights such that the variance of the activations are the same across every layer, which prevents

gradient vanishing or gradient exploding.

5.2.1 Basic Discriminator

In this subsection, we will implement the basic idea of employing SegResNet as a generator

alongside a naive discriminator. We will refer to the entire model, highlighted in Figure 5.1,
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consisting of the generator (G) and the basic discriminator (D), as GANB .

Figure 5.1: GANB architecture with a generator (G) and basic discriminator (D)

Architecture

The discriminator takes as input the segmentation masks generated by the generator for a

batch, as well as the batch of ground truth masks corresponding to the CT images used as

input for the generator. Both the generated masks and ground truth masks are processed by

the discriminator, resulting in a set of batch scores for each. These scores are used to compute

the loss function, which is explained in the subsection below.

Figure 5.2: Basic discriminator architecture

Loss Function

The loss function employed for the generator comprises two components: CE term (5.1), which

enforces segmentation, and an additional component that considers the mean score provided

by the discriminator for the generated mask inputs. This latter component is responsible for

the adversarial competition, with a goal of having a basic segmentation and then bringing the

generated masks closer to the ground truth masks. It is given in (5.8).
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The loss function used for the discriminator is based on the distance between the means of two

distributions: the distribution of the ground truth masks and the distribution of the generated

masks within a batch. This loss is directly inspired by the Wasserstein distance, as detailed

above in Section 5.2. The objective is to augment this difference, or inversely, decrease the

negative value of this difference. By doing so, the aim is to train the discriminator to assign

high scores to ground truth values and lower scores to generated values, thereby enhancing the

discriminator’s ability to distinguish between ground truth masks and generated masks. Its

mathematical expression is provided in (5.9).

LG = CE(G(x),MaskGT)− Ex∼Pz
[D(G(x))] (5.8)

LD = Ex∼Pz [D(G(x))]− Ey∼PMaskGT
[D(y)] (5.9)

Where:

MaskGT - A batch of ground-truth masks

G(•) - Generator function to generate masks from CT images x using the generator G

D(•) - Discriminator function to score masks (x ∼ Pz)

E(•) - Mean value of a distribution

Pz - Distribution of CT images in a batch

PMaskGT
- Distribution of ground truth masks in a batch

Both loss functions are minimized during training, with the discriminator being the starting

point. Initially, there is the minimization of the term Ex∼Pz
[D(G(x))] and the maximization

of Ey∼PMaskGT
[D(y)] within the discriminator loss, as explained above. On the other hand, the

generator’s loss is minimized subsequently, leading to a decrease of cross-entropy for a forced

segmentation, while Ex∼Pz
[D(G(x))] is maximized. This indicates that the generator learns

to fool the discriminator by assigning high scores to the generated masks, in contrast to the

discriminator’s objective. This competition results in a refined generated mask at the end of

training.

5.2.2 Product Discriminator

To enhance the performance achieved by our segmentation model, our implementation in this

section incorporates the evaluation of voxel values within the lung region by the discriminator,

as opposed to using only binary values as input as it is the case for GANB . Therefore, we

employ SegResNet as a generator and introduce a product discriminator. The complete model,

as depicted in Figure 5.3, encompasses both the generator (G) and the product discriminator

(D), and we will refer to it as GANP .
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Figure 5.3: GANP architecture with a generator (G) and product discriminator (D)

Architecture

The architecture of the product discriminator is identical to that of the basic discriminator (see

Figure 5.2). The key difference lies in the consideration of the element-wise product between

the generated mask from the generator and the CT image, resulting in an image containing

only lung voxels while blacking out voxels outside the lung region. This operation is also done

between the ground truth mask and its corresponding CT image. Subsequently, both the real

segmented lung and the segmented lung using the generated mask are input to the discriminator.

The discriminator performs the same operations as mentioned for the basic discriminator.

Loss Function

The same loss functions employed for the basic discriminator are also used for the product

discriminator. The only variation lies in the inputs, as previously mentioned. As a result, the

generator’s loss is written in (5.10), and the discriminator’s loss is expressed in (5.11).

LG = CE(G(x),MaskGT)− Ex∼Pz
[D(G(x)⊙ x)] (5.10)

LD = Ex∼Pz
[D(G(x)⊙ x)]− Ey∼PMaskGT

[D(y ⊙ x)] (5.11)

Where:

⊙ - Element-wise product operator, called also Hadamard product operator

MaskGT - A batch of ground-truth masks

G(•) - Generator function to generate masks from CT images x using the generator G

D(•) - Discriminator function to score the element-wise product of masks and their CT images

E(•) - Mean value of a distribution

Pz - Distribution of CT images in a batch

PMaskGT
- Distribution of ground truth masks in a batch
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5.2.3 Early Fusion Discriminator

In the context of the early fusion discriminator, our goal is to implement a novel architecture

to improve our base segmentation model. Instead of relying on a discriminator that employs

binary masks or the segmented lung, we utilize inputs that consist of the complete CT image

concatenated with the generated mask. This input is then compared to the concatenation of

the ground truth mask and its corresponding CT image through the discriminator, as shown

in Figure 5.4. This early stage concatenation is the basis for referring to the discriminator as

an early fusion discriminator. The whole model made of the generator and the discriminator

will be identified as GANEF .

Figure 5.4: GANEF architecture with a generator (G) and early fusion discriminator (D)

Architecture

The architecture of the early fusion discriminator maintains an identical structure to that of the

basic discriminator, as depicted in Figure 5.2. The key difference lies in the use of concatenation

between the mask generated by the generator and the CT image. This concatenation yields an

image that takes into account both the generated mask and the CT image. This design choice

is driven by the recognition that incorporating the CT image alongside its associated mask

provides valuable contextual information about the lung’s surrounding area. This additional

information can prove beneficial to the discriminator by aiding in the assessment of the dis-

similarity between the ground truth masks and the generated masks. A similar concatenation

operation is carried out between the ground truth mask and its corresponding CT image.

Loss Function

The loss functions for both the generator and the discriminator are very similar to those of the

basic discriminator and the product discriminator. However, since the discriminator’s inputs

differ from those of the discriminators detailed above, the loss functions experience a change in

inputs, as outlined below. In these equations, (5.12) represents the generator loss, and (5.13)

corresponds to the early fusion discriminator loss.
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LG = CE(G(x),MaskGT)− Ex∼Pz
[D(G(x)⊕ x)] (5.12)

LD = Ex∼Pz
[D(G(x)⊕ x)]− Ey∼PMaskGT

[D(y ⊕ x)] (5.13)

Where:

⊕ - Concatenation operator following the channels dimension

MaskGT - A batch of ground-truth masks

G(•) - Generator function to generate masks from CT images

D(•) - Discriminator function to score the concatenation of masks and their corresponding CT images

E(•) - Mean value of a distribution

Pz - Distribution of CT images in a batch

PMaskGT
- Distribution of ground truth masks in a batch

5.2.4 Late Fusion Discriminator

The late fusion discriminator has a distinct architecture compared to the other discriminators

presented so far. It consists of two branches: one branch takes CT images as input, while the

other focuses on the masks. The features extracted by these two branches are concatenated

into feature maps, which undergo further processing within the discriminator (see Figure 5.5),

that learns to score its inputs. We will refer to this model as GANLF .

The underlying concept behind this implementation is to extract significant features from both

the CT Image and its corresponding mask, enabling us to obtain enhanced information from

both sources. These features are concatenated and processed through additional layers within

the discriminator. This approach stands in contrast to early fusion, which concatenates the

CT image and its mask from the outset. Late fusion, by contrast, can capture more detailed

information and leverage these important features effectively.
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Figure 5.5: GANLF architecture with a generator (G) and late fusion discriminator (D)

Architecture

The architecture of the late fusion discriminator is detailed in this subsection and presented in

Figure 5.6. The left branch, made of one convolutional layer, takes the segmentation mask as

input, while the right branch, consisting of two convolutional layers, takes the CT image as in-

put. After passing through these layers, the feature maps from both branches are concatenated.

This concatenation is performed along the channels dimension, resulting in feature maps with

an increased number of channels.

The concatenated feature maps are then fed to a final layer composed of a series of convolutional

operations, ending with two fully connected layers. The output of this discriminator is a score

used to discriminate between pairs: the generated mask and its corresponding CT image, and

the pair consisting of the ground-truth mask and its corresponding CT image.

Figure 5.6: Late fusion discriminator architecture
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Loss Function

For both the generator and the discriminator, the losses are given as (5.14) and (5.15), re-

spectively. These losses are used in the same context as the loss functions used for the basic

discriminator and the previous losses. However, the slight difference is in the discriminator’s

inputs.

Instead of a single input for one branch of the discriminator, we now use two inputs for each

of the two branches of the discriminator. These input pairs are denoted as (G(x), x) for the

generated mask and the CT image and (y, x) for the ground truth mask and the CT image,

where x is from the distribution Pz of CT images, and y is from the distribution PMaskGT
of

ground truth masks.

LG = CE(G(x),MaskGT)− Ex∼Pz
[D(G(x), x)] (5.14)

LD = Ex∼Pz [D(G(x), x)]− Ey∼PMaskGT
[D(y, x)] (5.15)

Where:

MaskGT - A batch of ground-truth masks

G(•) - Generator function to generate masks from CT images

D(•) - Discriminator function to score the pair of masks and their corresponding CT images

E(•) - Mean value of a distribution

Pz - Distribution of CT images in a batch

PMaskGT
- Distribution of ground truth masks in a batch

5.2.5 Regression Discriminator

The design of the regression discriminator, which will be detailed in this subsection, differs

from other discriminator architectures. This design is motivated by our goal to approximate

the distance between the two distributions of the scores of the generated masks and the ground

truth masks through a regression process. The whole model made of the generator and the

discriminator will be denoted as GANREG (see Figure 5.7).
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Figure 5.7: GANREG architecture with a generator (G) and regression discriminator (D)

Architecture

The regression discriminator’s architecture consists of two branches: one takes the generated

mask as input, and the other takes the corresponding ground truth mask as input. Both

masks undergo the same number of convolution operations until reaching a point where the

extracted features from both branches are concatenated along the channels dimension. This

discriminator is characterized by having more layers in both branches, indicating that lower-

level features are learned before reaching the concatenation point. This allows more detailed

information extraction from both masks.

The feature maps resulting from this concatenation go through additional layers for further

processing. The result of the discriminator is an approximation of the distance between the

generated mask and the ground truth mask.

Figure 5.8: Regression discriminator architecture
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Loss Function

In this context, the loss function for the generator remains the same as the loss function em-

ployed by the generator in GANB . The only change is due to the change of the inputs of the

discriminator, which is also considered in the generator’s loss. Consequently, the generator loss

is expressed as 5.16.

When it comes to the discriminator, the principle is to minimize the mean of the discriminator’s

output. The output is an approximation of the distance between the two distributions of

generated masks and ground truth masks. This approximation is a regression process which

justify the name of the discriminator ”regression discriminator”.

LG = CE(G(x),MaskGT)− Ex∼Pz
[D(G(x), y)] (5.16)

LD = Ex∼Pz, y∼PMaskGT
[D(G(x), y)] (5.17)

Where:

MaskGT - A batch of ground-truth masks

G(•) - Generator function to generate masks from CT images

D(•) - Discriminator function to score the pair of masks and their corresponding CT images

E(•) - Mean value of a distribution

Pz - Distribution of CT images in a batch

PMaskGT
- Distribution of ground truth masks in a batch

5.3 Training and Results

Training

For our training process, we use Adam optimizer [16], as an optimization algorithm. We train

our models using a batch size of 8. Hyperparameters are given as follows: a learning rate of

10−3, a momentum of 0.9, weight decay set at 10−5, and a total of 50 training epochs.

The training hyperparameters were used for all our models: the Base Model, GANB , GANP ,

GANEF , GANLF , GANREG.

For the training data, we used the dataset described in Chapter 3, after being preprocessed.

From an initial set of 83 pairs of CT images and masks dedicated for training and validation,

we reserved 32 pairs for validation.

The training algorithms for our base model, both when trained alone and within a GAN setup,

are provided in Algorithms 1 and 2, respectively.

During testing, we observe the evolution of losses and validation metrics, which are also used

for testing later, as we will see in the next subsection, during training for all our experiments.

The curves are shown respectively in Figure 5.9 and Figure 5.10.

We save model weights each time these weights make the model perform better over a sequence

of epochs. In other words, when the metrics remain above the moving average of metrics.
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Algorithm 1: Base Model (SegResNet) Training for 3D Lung Segmentation

Input : CT Images (Pz), Ground truth masks (MaskGT )
Output: Trained generator G

1 for epoch← 1 to Nepochs do
2 Sample a batch of CT images and their ground truth masks

{(x1, y1), (x2, y2), . . . , (xB , yB)} from (Pz,MaskGT );
3 Generate a batch of segmentation masks {z1, z2, . . . , zB} from {x1, x2, . . . , xB} using G;
4 Calculate generator loss LG using the ground truth and generated masks;
5 Update generator weights: G← G− α∇GLG;

Algorithm 2: GAN Training Algorithm for 3D Lung Segmentation

Input : CT Images (Pz), Ground truth masks (MaskGT )
Output: Trained generator G and discriminator D

1 for epoch← 1 to Nepochs do
2 Sample a batch of CT images and their ground truth masks

{(x1, y1), (x2, y2) . . . , (xB , yB)} from (Pz,MaskGT );
3 Generate a batch of segmentation masks {z1, z2, . . . , zB} from {x1, x2, . . . , xB} using G;
4 Calculate discriminator loss LD using ground truth and generated masks;
5 Update discriminator weights: D ← D − α∇DLD;
6 Calculate generator loss LG using the ground truth and generated masks;
7 Update generator weights: G← G− α∇GLG;

Figure 5.9: Evolution of loss functions over epochs during model training
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Models MeanDSC MeanIoU MeanHD

Base Model 0.9829 0.9670 17.83
GANB 0.9819 0.9651 28.01
GANP 0.9745 0.9731 27.59
GANEF 0.9876 0.9757 14.58
GANLF 0.9906 0.9815 21.43
GANREG 0.9901 0.9807 20.85

Table 5.1: Computed MeanIoU, MeanDSC and MeanHD on test data for our six models

Figure 5.10: Evolution of metrics (MeanDSC, MeanIoU and scaled MeanHD) over epochs during
model training

Testing

Testing the model’s performance is conducted using the generator alone, as it is responsible

for generating segmentation masks, whether it was trained as a standalone model or in an

adversarial training setup. At this stage, we no longer consider the discriminator for GAN

models.

Testing is made on the 80 pairs of CT images and their corresponding masks. The model’s

performance is quantitatively assessed using the IoU metric and the DSC metric, as ex-

plained in 2.3.1. However, since the generated mask consists of 3 channels and has dimensions

[1, 3, 128, 128, 128], where 1 is the batch size, 3 is the number of channels, and 128 represents

the size along the X, Y, and Z axes, we compute the DSC, the IoU and the HD for each channel

of the generated mask compared to the ground truth mask, which gives a vector of length 3 for

each metric. Subsequently, we calculate the mean of eahc of this vectors, which we refer to as

MeanIoU, MeanDSC and MeanHD metrics.

In the testing step, we computed the metrics MeanIoU and MeanDSC, and the results are listed

in Table 5.1.

Discussion

The models perform well quantitatively, as shows the metrics 5.1, where the performance is

better for different GANs compared to the Base Model alone and also in the superposition
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of the CT images and the generated lung segmentation masks when the gastric bubble is

positioned far from the lung, as shows Figures 5.11, 5.12, 5.13. However, some models often

fails to distinguish between the gastric bubble voxels and the lung voxels on CT images where

the gastric bubble is very close to the lung, as it is the case for some CT images (see Figure

5.14).

The gastric bubble is visible when viewed along the Y-axis. We will focus exclusively on slice

55, which is sliced along the Z-axis and viewed along the Y-axis.

Figure 5.11: Slice 55 of the segmentation masks (yellow) generated on individual CT images
(purple) as viewed from the X-axis perspective. Each column corresponds to a model, and each
row corresponds to a patient
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Figure 5.12: Slice 55 of the segmentation masks (yellow) generated on individual CT images
(purple) as viewed from the Y-axis perspective. Each column corresponds to a model, and each
row corresponds to a patient

Figure 5.13: Slice 55 of the segmentation masks (yellow) generated on individual CT images
(purple) as viewed from the Z-axis perspective. Each column corresponds to a model, and each
row corresponds to a patient

30



Figure 5.14: Slice 55 of the segmentation masks (in yellow) generated from individual CT
images (in purple), viewed from the Y-axis perspective. Each column represents a model, and
each row represents a patient. Notably, for all four patients, the gastric bubble is very close to
the lung

The idea of enhancing the base model’s performance through adversarial training does not

effectively address this issue, some models fail to generate a lung segmentation mask that

doesn’t include the gastric bubble pixels. Consequently, we opted for a supplementary solution

to reduce the true positives. This method will be detailed in the next section.

5.4 Ensemble Method

This method consists of performing an ”ensembling”: based on the segmentation masks gener-

ated by different models, we assign a score to indicate the likelihood of a voxel belonging to a

particular class. The objective is to have the models participating in this scoring process ”vote”

on whether a voxel is part of the gastric bubble or not.

Ensemble methods, are modern approaches in machine learning, that excel in enhancing pre-

diction accuracy by combining the collective predictions of diverse models. Instead of relying

on a single model with its limitations, ensemble methods use the strength of multiple models.

By merging their outputs, they improve robustness and generality. Different classical models

are based on ensemble methods, including the Random Forest classifier [13], Gradient Boosting

Machines [7], AdaBoost [6], and others.

These methods consistently demonstrate superior performance across various tasks compared

to the use of a single model. For instance, when comparing a single decision tree to a Random

Forest classifier for a classification task, it becomes evident that the Random Forest classifier

offers better performance and better decision-making.

Scoring Pipeline

The scoring pipeline takes two parameters as input: the pretrained models where Nmodels is

the number of models and a contibution rate denoted as Rc, between 0 to 1. This contribution

31



rate is used to compute the thershold as follows: T = Rc ×Nmodels.

We generate segmentation masks for all the test CT scans. These masks are gathered from the

various models where each generated mask is binary. For each CT image we sum the generated

masks issued by each model (see 5.18), as a result we have a resulting 128×128×128 matrix

with coefficients between 0 and Nmodels. If a voxel’s value surpasses the threshold T , the scoring

model determines that the voxel belongs to the lung. On the other hand, if the value is below

the threshold, the voxel is classified as not part of the lung (see 5.19).

The scoring pipeline is designed as shown in Figure 5.15.

Sl
ijk =

∑
m∈M

(Aijk)
l
m (5.18)

Ol
ijk =

1 if Sl
ijk ≥ T

0 else
(5.19)

Ol
ijk −Voxel value in position i, j, and k, along axes X, Y, and Z, respectively, in the gene-

rated mask from CT image l after scoring

(Aijk)
l
m −Voxel value in position i, j, and k, along axes X, Y, and Z, respectively, in the gene-

rated mask from CT image l through model m

Sl
ijk − Score of generated mask from CT image l (Sl

ijk ∈ [0, Nmodels])

Figure 5.15: Architecture of the scoring pipeline

Application

We applied this scoring pipeline using our six pretrained models: the Base Model, GANB ,

GANP , GANEF , GANLF , and GANREG, resulting in Nmodels = 6. We used a contribution
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Models MeanDSC MeanIoU MeanHD

Scoring Pipeline 0.9859 0.9723 11.66

Table 5.2: Computed MeanIoU, MeanDSC and MeanHD on test data after scoring

rate Rc = 0.8, which means that a voxel is considered part of the lung if it is identified as such

by at least 80% of the models.

After scoring on the preprocessed test data, on which the models were previously trained, we

improved the MeanHD which is closely related to the contour difference between the ground

truth masks and the generated masks, as we can see by comparing the MeanHD in Table 5.1

and Table 5.1.

The decrease in MeanDSC and MeanIoU may be due to the disappearance of voxels along the

lung’s contour after scoring. This occurs due to the models’ uncertainty on whether these voxels

are in the segmentation mask. However, this typically does not pose significant issues if the

error is limited to very few voxels located near the contours.

In Figure , it is evident that the generated masks after scoring significantly reduced the size of

the gastric bubble, confirming the quantitative improvement in MeanHD (see Table 5.2).
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Figure 5.16: Slice 55 of the segmentation masks (in yellow) generated from individual CT images
(in purple), as viewed from the Y-axis perspective (right column). Slice 55 of the ground truth
mask, also viewed from the Y-axis perspective (left column). Each row corresponds to the same
patient, as shown in Figure 5.14

This ensemble method may still have some limitations, particularly when the gastric bubble is

not significantly reduced, especially when it is located directly under the lung, as illustrated in

Figure 5.17.

While this method aids in reducing false positives in many instances, its accuracy could poten-

tially be enhanced with the inclusion of additional pretrained models. We observe improvements

using our current models, but using more models with diverse architectures and training pa-

rameters has the potential to yield substantial enhancements.
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Figure 5.17: An example where the gastric bubble is very close to the lung. The proposed
ensemble method fail to reduce false positives related to the gastric bubble

5.5 Customized Loss Method

In this section, we will present a secondary approach aimed at reducing false positives in lung

segmentation. These false positives mainly consist of voxels incorrectly classified as part of the

lung by the model.

Our idea involves implementing a segmentation loss that incorporate the Hausdorff loss [15]

besides to the cross-entropy. Specifically, we maintain the cross-entropy (CE) with a weight

factor, wCE , and introduce the Hausdorff loss (HD) with a weight factor, wHD, both ranging

between 0 and 1.

The goal is to find an appropriate weighting for CE and HD that optimally balances their

contributions.

We applied this method exclusively to a basic discriminator to assess whether it would lead

to improvements in terms of reducing false positives in the generated lung segmentation mask,

particularly in the context of gastric bubble reduction. The model will be denoted GAN′
B

Loss Design

As described above the customized loss function for the generator and the normal loss for the

discriminator of GAN′
B are defined, respectively in 5.20, 5.21.

LG = wCECE(G(x),MaskGT) + wHDHD(G(x),MaskGT)− Ex∼Pz
[D(G(x), y)] (5.20)

LD = Ex∼Pz, y∼PMaskGT
[D(G(x), y)] (5.21)

Experiment and Results

We conducted a single experiment due to time constraints. We followed the same training

process and used the same training parameters outlined in Section 5.3. The only modification is
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Models MeanDSC MeanIoU MeanHD

GAN′
B 0.9838 0.9684 12.48

Table 5.3: Computed MeanIoU, MeanDSC and MeanHD on test data of GAN′
B

in terms of the generator loss, which differs from the GANB described earlier, as it incorporates

segmentation.

n this experiment, we assigned a weight of 0.4 to wCE and 0.6 to wHD, nearly balancing the

contributions of the Hausdorff loss and the cross-entropy loss. This allocation targets the central

regions of the segmentation mask at 40% and the segmentation mask contours at 60%.

As a result, we obtained the metrics after testing on the preprocessed test data, as presented

in Table 5.3.

The MeanHD is smaller than all the MeanHD of our six models presented in Table 5.1. This

confirms an improvement in terms of precision in approximating ground truth masks, particu-

larly when it comes to adjusting the contours.

The qualitative results in Figure 5.18 confirm this improvement. It is clear evident that the

presence of gastric bubbles has been significantly reduced compared to the outcomes of the six

previous models.

Figure 5.18: Slice 55 of the segmentation masks (in yellow) generated from individual CT
images (in purple), viewed from the Y-axis perspective. Each column represents a model, and
each row represents a patient. Notably, for all four patients, the gastric bubble is very close to
the lung
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Chapter 6

Conclusion and Future Work

In this section we will estabilish a conclusion of all the work presented above and we will open

new perspectives of the work that could have been done to improve the results.

6.1 Conclusion

During my internship, my work focus was around enhancing 3D lung segmentation from CT

scans, a very important step in Median Technologies’ lung cancer screening workflow. The

challenge was to accurately segment the lungs, particularly when the gastric bubble was in

close proximity, often resulting in mispredicting gastric bubble voxels as a part of the lung.

To tackle this issue, we employed various architectures inspired by WGAN principles. The

base model, SegResNet, was trained both alone and within different GAN configurations, each

using different discriminator architecture. The goal was to use the discriminator’s learned prior

knowledge to refine the generated masks.

Through adversarial training and the use of specialized loss functions, some models showed im-

proved lung segmentation precision. This improvement can be seen quantitatively through the

IoU and DSC metrics, which showed enhanced performance compared to base model. Moreover,

visually, the overlap with ground truth masks also this enhancement in some models.

However, in cases where the lung was in very close to the gastric bubble, the models did

not exhibit significant improvement. To mitigate false positives in the segmentation mask,

we implemented an ensemble scoring pipeline that combined predictions from multiple models.

This approach relied on the models’ ”votes” to reduce incorrect labeling of gastric bubble voxels.

We made also some preliminary efforts to implement customized loss functions for the generator

with the goal of improving segmentation and reducing the inclusion of gastric bubble areas in

the lung segmentation mask.

This internship project’s goal is the enhancement in the accuracy of lung cancer screening,

primarily through robust lung segmentation, which is important for lesion detection in next

analysis steps.

6.2 Future Work

For future work, we can explore the impact of adjusting the weights in the customized loss of

GAN′
B . Given more time, we could inspect this aspect in more detail.
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We suggest also to particularly inspect in details the latent space where the compressed infor-

mation from CT scans is decoded to generate segmentation masks.

The issue of over-segmentation, where the model includes the gastric bubble as part of the lung,

may be linked to the learned latent space resulting from the encoding process of the SegResNet

model. In scenarios where the majority of patients have a gastric bubble positioned far from the

lung, the latent representation tends to adapt to this standard lung representation. As a result,

the latent representation of CT scans tends to center around this mean lung representation,

which leads to the misclassification of certain voxels that are close to the lung and similar to

lung tissue as part of the lung. Consequently, the gastric bubble or a portion of it is incorrectly

classified as part of the lung.

This optimization technique consisted of training a model to predict one of the segmentation

evaluation metrics using the feature maps derived from the forward propagation of CT image

through the encoder. In other words, we wanted to perform regression to predict the metric

from the latent space feature maps.

The next step consisted of using the regression model to predict the evaluation score and

perform a gradient descent from this prediction to optimize the latent space feature maps of

the CT images directly. This optimization would act as a post-processing method and keep

the encoder and decoder parameters unchanged, and add only prior knowledge to the latent

features to enhance the generated mask.

We started implementing this method towards the end of the internship. The primary challenge

encountered was related to the regression task, where the predicted metric showed small vari-

ations between different CT scans. Additionally, predicting the correlation between the latent

space and the metric showed to be very difficult, due to the highly compressed information

in the latent space feature maps. Time constraints limited our ability to work deeper on this

optimization technique, but it could be a very insightful and accurate method to work on for

further improvement of the segmentation outcomes.
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