Projet: Traitement du Signal

Ayoub EL HOUDRI

ING 2 - MI 1

Relation entre Image et Signal numérique

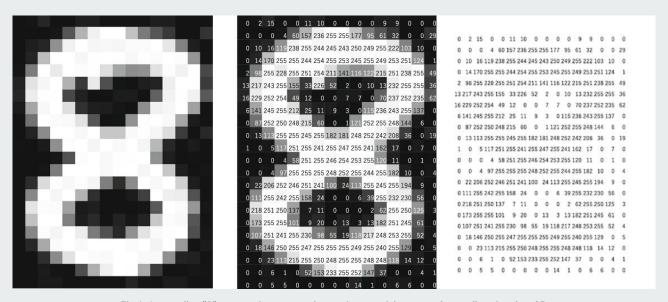


Fig 1: Image d'un "8" manuscrit et sa représentation numérique sous forme d'un signal en 2D

Détéction de contours : Principe

- 1. Détection des variations brusques d'intensité dans le signal à l'aide d'un filtre (Prewitt, Sobel, Canny ...)
- 2. Remplacer les régions de l'images qui représentent une variation brusque d'intensité par un trait blanc dont l'intensité dépend de la variation de l'intensité remarquée
- → Résultat : Image avec des contours marqués par des traits blancs d'intensité qui varie.

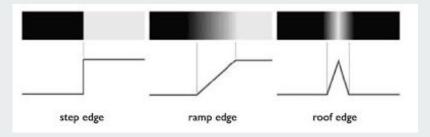


Fig 2: Représentation du signal d'images représentant des variations brusques d'intensités

Images prises en entrée

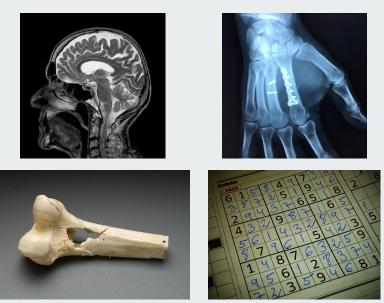



Fig 3: Images d'entrée utilisés pour le projet

Prétraitement des images d'entrée

1. Transformation en échelle de gris (Gray scaling)

2. Application du flou Gaussien (Gaussian blur)

Application des différents filtres

La détection de contours correspond à la recherche d'un filtre permettant de déterminer les fortes variations de couleurs dans l'image.


Filtres utilisés:

- Filtre de Prewitt
- Filtre Gradient (appliqué selon \vec{x})
- Filtre de Roberts
- Filtre de Sobel
- Filtre Canny

Conditions pour filtrage optimal:

- Temps de calcul
- Bonne détection
- Bonne localisation
- Non multiplicité des réponses

Gradient selon
$$\overrightarrow{\mathbf{x}}$$
 $G_x = \frac{\partial I}{\partial x} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ et $G_y = \frac{\partial I}{\partial y} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

Filtre du gradient selon \overrightarrow{x}

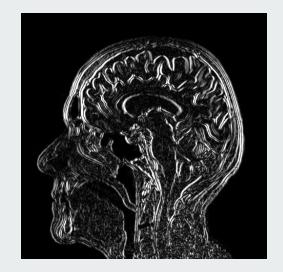


Fig 4: Application du filtre gradient à l'image IRM Brain

Filtre de Prewitt

$$\frac{\partial I}{\partial x} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad \frac{\partial I}{\partial y} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Filtre de Prewitt

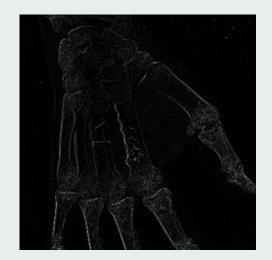


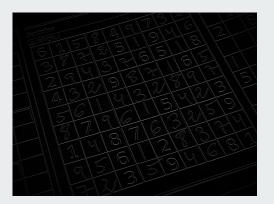
Fig 5: Application du filtre Prewitt à l'image IRM Hand

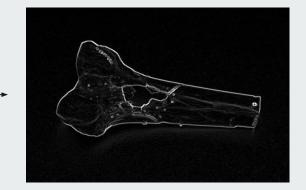
Filtre de Roberts $\frac{\partial I}{\partial x} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\frac{\partial I}{\partial y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$\frac{\partial I}{\partial x} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et}$$

$$\frac{\partial I}{\partial y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Filtre de Roberts




Fig 6: Application du filtre Roberts à l'image Sudoku

Filtre de Sobel

$$\frac{\partial I}{\partial x} = \begin{pmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \quad \text{et} \qquad \frac{\partial I}{\partial y} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix}$$

Filtre de Sobel

Filtre Laplacien

$$\nabla I^2 = \left[\frac{\partial^2 I}{\partial x^2}; \frac{\partial^2 I}{\partial y^2} \right]$$

Filtre du Laplacien

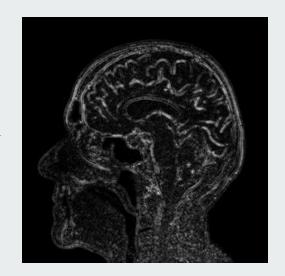


Fig 8: Application du filtre Laplacien à l'image IRM Brain

Filtre Canny

Initialisation de deux seuils : 1 et 100.

Filtre du Canny

Merci de votre attention

